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THRUSTING TRAJECTORY MINIMIZATION PROGRAM
FOR ORBITAL TRANSFER MANEUVERS

By Lawrence H. Hoffman, Richard N. Green,
and George R. Young
Langley Research Center

SUMMARY

A computer program has been designed which determines the minimum -burn-time,
thrusting, transfer trajectory between two Keplerian orbits. The minimization equations
are formulated with constant Lagrange multipliers and solved numerically with the
Newton-Raphson method. The solution obtained in this paper is not truly optimum
because the control vector has been restricted to constant values (i.e., to be optimum the
control vector should be a function of time).

The equations of motion for the transfer trajectory are those of a spacecraft maneu-
vering with constant thrust and mass-~flow rate in the neighborhood of a single body. The
thrust vector is allowed to rotate in a plane with a constant pitch rate. The transfer
trajectory is characterized by six control parameters and the final orbit is determined or
partially determined by the desired target parameters. The program is capable of
varying from one to six control parameters to find the desired target parameters which
are chosen from a large set. If the number of target parameters is less than the number
of control parameters, the fuel required for the maneuver is minimized. To conserve
computer time the equations of motion are integrated by a truncated power series in time.
The use of the program is illustrated with three sample computer cases.

INTRODUCTION

In order to study completely an interplanetary, orbital mission it is necessary to
define the maneuver targeting logics that are required at each of the guidance junctures.
In the case of the Viking mission it is felt that adequate interplanetary targeting studies
can be accomplished with the Mark IV Error Propagation Program (ref. 1) or the
Simulated Trajectories Error Analysis Program (ref. 2). Both of these programs include
targeting options to determine the midcourse velocity corrections such that the trajectory
constraints are satisfied at the planet. In addition, each program can be used to perform
an error analysis of the interplanetary phase of the mission. However, since neither
program has a finite burn maneuver capability, they will not solve the targeting problem
for the Mars orbit insertion maneuver, the orbit trim maneuvers, or the deorbit maneu-
vers. Various programs exist for the near planet targeting analysis required for this



mission (e.g., refs. 3, 4, and 5); however, for various reasons the existing programs were
unsuitable for this analysis. References 3, 4, and 5 are all for a coplaner transfer which
is not general enough for the Viking mission. Many other existing programs are impul-
sive and therefore one cannot estimate fuel requirements accurately with them. For
these reasons a computer program VITAP (Viking Targeting Analysis Program) was
developed which solves the near Mars phase of the targeting analysis.

One of the areas of investigation in Project Viking is that of determining the
minimum -fuel, thrusting, transfer trajectory between two Keplerian orbits. This pro-
blem exists for the Mars orbit insertion maneuver, the orbital trims, and for the deorbit
maneuver. The equations of motion for the transfer trajectory are those of a spacecraft
maneuvering with constant magnitude thrust and mass-flow rate in the neighborhood of a
single body. To increase the flexibility of the program the thrust vector is allowed to
pitch at a constant rate; however, for Project Viking, the pitch rate is zero. Therefore,
the problem considered here is as follows: Given an initial Keplerian orbit and the
characteristics of the engine, determine a set of control parameters which define the
thrusting maneuver such that the required fuel is minimized and the resulting orbit

satisfies a number of constraints.

A description of the mathematics used in VITAP is presented. It consists of solving
a finite-dimensional minimization problem with equality constraints. The minimization
equations are formulated with constant Lagrange multipliers and solved numerically with
the Newton-Raphson method. Since these equations are very complicated, the first and
second partial derivatives necessary for the solution are computed numerically, A dis-
cussion of this procedure is also included. A detailed description of the assumed model
of the thrusting spacecraft is given together with the associated equations of motion. To
conserve machine time these equations are integrated by a truncated power series in
time. The power series solution to the equations of motion is completely developed in
the appendix. A description of the computer program is given with a discussion of the
program input and output. The use of program VITAP is illustrated with three sample

computer cases.

SYMBOLS
A submatrix defined in equation (8)
a semimajor axis, kilometers
a* specific value of a, kilometers
a(t) magnitude of thrust acceleration at time t, kilometers/second2
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submatrix defined in equation (8)

vector from center of planet to incoming hyperbolic asymptote, kilometers
component of B in R direction, kilometers (see sketch 3)
component of B in T direction, kilometers (see sketch 3)
eccentricity

augmented function (see eq. (1))

function of @

lighting angle at landing point, degrees (see sketch 2)

partial derivatives of F with respectto @ (see eq. (4))
inclination, degrees

specific value of i, degrees

step size control variable (see egs. (11))

mass, kilograms

number of trajectory integration increments

error variable (see eq. (12))

unit vector perpendicular to planet equator (see sketch 3)
radius from center of planet, kilometers

radius of apoapsis, kilometers

radius of periapsis, kilometers

unit vector parallel to incoming hyperbolic asymptote (see sketch 3)



'f‘ unit vector in planet equator perpendicular to S (see sketch 3)

t time, seconds

ty time duration of thrusting maneuver, seconds

Ve hyperbolic excess velocity, kilometers/second

-}Ef six-dimensional state of spacecraft at end of maneuver

X,¥,Z rectangular Cartesian coordinates, kilometers

a,B,0 angles defining direction of thrust, degrees (see sketch 1)

a vector of control variables

@, first guess for @

AV integral of acceleration due to thrust, kilometers/second (see eq. (18))

ag* maximum allowable step size of &

AT =% -%y

oo infinitesimal variation of o

€ convergence criteria (see eq. (12))

) angle between landing point and periapsis, degrees (see sketch 2)
6 thrusting pitch rate, degrees/second (see sketch 1)

x vector of constant Lagrange multipliers

5\.1 first guess for X



gravitational constant of planet, kilometers3/ second?

i}
v true anomaly, degrees

¢ latitude of landing point, degrees

Y trajectory constraints

Q longitude of ascending node, degrees

w argument of periapsis, degrees
Subscripts:

f final value

i,i, indices

m number of constraints Y

mXm matrix with m rows and m columns
min minimum

n number of control parameters

(o] initial conditions

1,2,... first, second, ...

Superscripts:

T matrix transpose

-1 matrix inverse

Dot over a symbol indicates differentiation with respect to time.

modified parameter



ANALYSIS

Finite-Dimensional Minimization Problem with Equality Constraints

Consider the finite -dimensional minimization problem in which equality constraints
have been imposed. It is desired to find a set of controls (al,az,. . .,ozn) such that the
function f(al,az,. . .,an) is minimized subject to the m constraint conditions

1l/l(a‘) =0
7#2(('1') =0
V@) =0

where m=n. ¥ f and y; are sufficiently smooth and tpi linearly independent, the
solution must satisfy the conditions

oF | oF]
3&1 BAI
_F BF
OF _ loag| =7 and 3F _ \axg| =0
oo . o .
oF oF
[ 90 | O]

where F is defined as

l=m
F=1f+ z )‘l”bl (1)
=1
and X = E\I,AZ,. « >Am T is an m-dimensional Lagrange multiplier vector. Therefore,
necessary conditions for & to minimize f(&) are
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af ! Wy .. ¥m N
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In addition, a sufficient condition for a local minimum (refs. 6 and 7) is given by

i=n ]z
Sas; 6 >
ba; aa] o @y 0
_1 ]—

where
ba =a - Ymin

and is constrained to satisfy

% I m Sa
3(!1 Ban .1
=0
oy oy .
m m
For ey day,

Newton-Raphson Technique

The necessary conditions for a minimum (eqs. (2) and (3)) can be solved by the

Newton-Raphson technique. Let

gi(a,}) = @5

3&1

Then the necessary conditions can be written as
gi(aﬁ\) =0

\Dl (a) =0

4



Expanding equations (5) and (6) in a truncated Taylor series about the point '&1,5\’1
(where ?1'1 denotes the first guess at the control vector and 3:1 denotes the first guess
at the Lagrange multipliers) yields

LGN (1) 5

— -2q) =0 i=1,2 .. .,n)
oa oA 1) ’

g1(@.%) = g1 (@1,%1) +

W
Yy (d) = ¥ydy) + 45 (-5‘ - -071) =0 ¢=12...m)

-t

oa
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then the necessary conditions can be expressed as
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where Ad@ =7 -d; and AX =7 - 'Xl are the corrections to improve the initial guess.
The familiar Newton-Raphson iteration equations can now be written as
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Inspection of equation (7) reveals that it can be written as

[Bag] [ : RN
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For the case where m =n, it is instructive to consider the inverse of the matrix in
equation (8) using Schur's method for partitioned matrices (ref. 8), that is,

[Aqq | B 1 ) '__g
1 1 i -1 1
a1 _ A-18T(Ba-18T) "Ba-1 |A"1BT(BA1BT) ,
1
1
1
Aap | “8n
e i i il v (9)
1 -1 : 1 1
(Ba-18T) "Ba-! i _(pa1BT) .
o ! .
[}
| A m)| n E B _"Pm_j

If m =n and all the proper inverses exist, the expression Al A'lBT(BA'lBTleA"1
reduces to the null matrix [0] and the corrections to the control parameters depend only
on the errors in the constraints and not on the Lagrange multipliers associated with

gi(a ,_72) This is to be expected when n controls are varied to satisfy n constraints

and no minimization takes place. In addition, when m =n the expression

-1
A'lBT(BA'lBT) reduces to B! such that

(10)



which are the Newton-Raphson iteration equations for solving n equations in
n unknowns.

Experience has shown that the range of convergence for the Newton-Raphson tech-
nique can be considerably extended by placing constraints on the allowable sizi of the step
to be taken. If the step size of the controls is constrained to be less than AGQ , then a

modified step size is given by

Aozt1 -x-1 Ao (i=1,2,...,n) )
Ay =K1 Ay ¢=1.2,...,m)
where
Ao4| |Aa Aa
2
K = max 1,| il,l *l,...,l 2'

Such a procedure will greatly increase the range of convergence for equation (9).

The Newton-Raphson technique is considered complete when the errors in the con-
straints and the first partial derivatives of the augmented function are small, that is, when
the control vector converges and ceases to change. Symbolically, the solution is complete

when

R<e (12)

where
R=|g1' +...+[gnl +Iw1|+...+|¢m|

and € is a small number.

Numerical Differencing Formulas

The Newton-Raphson iteration technique used to solve the finite-dimensional mini-
mization problem requires expressions for a number of partial derivatives. From equa-
oy og.
tion (7) it can be seen that the partial derivatives -a—(-yl and _al are needed where
j j
9 l=m 621/./
N Z l
= Ay ——
801i o0, low, do,
1 7]

agi
da;
I =1

]

Assuming that f(al,az,. . .,an) can be differentiated directly, it remains to obtain the
first and second derivatives of the constraint functions "Pl with respect to the con-
trols ozj. In general wl(al,az,. . .,an) is an implicit function of o and does not lend

10



itself to direct differentiation. However, it was found that numerical partial derivatives
are quite adequate for the Newton-Raphson iteration equations. Letting Aa@j denote a
small increment in «j, the first partial derivatives can be represented by (ref. 9, p. 136)

|
_BBE = ﬂa_jl}pl (al" . .,aj+Aaj,. . .,an) - t,bl (al" . .,aj—Aaj,. . "an):, (13)

where 1=12,....m and j=1,2,...,n. Similarly, the second partial derivatives can be
represented by

22y, 1 R R
dari aaj - A AO!J EIDZ (aly- .0 O HAOY,. . .,ozj+ aj,. . .,ozn)

- ”Dl (al,. . @A, . .,aj -Aaj,. ..,ozn) - Y (al,. @ -AQy,. . .,aj+Aaj,. . .,an)

+ (al,. C @A, 0 A,. .,ozn):, (14)

where 1=1,2,...,m and i,j=1,2,...,n. When j is replaced by i, equation (14)

reduces to

82y
'é‘;'_é = (_A:ll)—zl:wl (011,- . .,ai+Aai,. . -,an) = 2¢/l (al" . -,Oln) + lpl. (011,. . .,ai—Aai,. . .,an)]

1

which reduces the number of times that Y, is evaluated. It can be shown that ”Dl
must be evaluated 2mn times to obtain the first partial derivatives and <$W + 1)

times to obtain the second partial derivatives.
APPLICATIONS

Equations of Motion

The engine used to perform these maneuvers is assumed to have a constant thrust
and a constant mass-flow rate m. If the mass of the spacecraft at the start of the
maneuver is mg, then the mass at time t is given by

m(t) = m, + ft (15)

11



and the magnitude of the acceleration by

Thrust

a(t) =
® mg + mt

The direction of the acceleration vector is defined by sketch 1, where the X,Y,Z f{riad is
the inertial Cartesian coordinate system alined such that the Z-axis is perpendicular to
the Mars equator and the X-axis is at the Mars vernal equinox. This system of coordi-
nates is normally referred to as the areocentric system. From sketch 1, it can be seen

A

Sketch 1

that the locus of the thrust vector is in the plane defined by the angles « and pB. At the
start of the maneuver (t = 0) the thrust-vector direction is defined by the angle & and
thereafter is allowed to rotate in the «,B8 plane at a constant rate 6 until the maneuver
is terminated at t =t. During the maneuver the thrust vector is defined by the angle

5+0t and the direction cosines are

cos (5+6t) cos @ - sin (6+6t) sin & cos B
cos (6+6t) sin o + sin (6+6t) cos o cos B

sin (5+6t) sin 8

The assumed trajectory model is two body motion plus an acceleration due to thrust and
is defined by the equations of motion

12



X = ;UTX +aft) [cos (6+6t) cos o - sin (646t) sin @ cos B:l (16a)
r

y= —u-3y + aft) E:os (6+6t) sin @ + sin (6+6t) cos a cos B] (16b)
T

7=2EZ ,a() [sin (6+6t) sin B] (16c)
T3

where

_ Thrust

aft) = mg + mt

r =(x2 + y2 + zz>1/2

and p is the gravitational constant. The initial conditions for the equations of motion
are derived from the knowledge of the initial orbit plus a control variable v, which
denotes the true anomaly on the orbit at the start of the maneuver. In other words, the
initial orbit is known, but the ""best" position along this trajectory to perform the maneu-
ver is unknown. Therefore, the best position vy must be determined during the optimi-
zation process. In fact there are six parameters that characterize the maneuver and
must be determined, namely, a,B,é,é,tb,Vo. The initial direction of thrust is defined

by «,B,0; the pitch rate, by é; the time duration of the burn by tb; and the position

of ignition, by v,. These six parameters constitute the set of control parameters
(al,az,. . .,an) for the finite-dimensional minimization problem. The function of these
parameters to be minimized is simply

f(al,az,. . .,an) = f(a,B,ﬁ,é,tb,uo) _ tbz

Since the mass-flow rate is constant, minimizing the square of the burn time is equivalent
to minimizing the required fuel. The function to be minimized is not restricted to tb2
and there are other continuously differentiable functions of the controls that could have
been used. Once the six controls are determined they along with the initial orbit com-
pletely define the final orbit.

Trajectory Constraints

The controls are to be determined such that the burn time is minimized subject to
the requirement that the final orbit has certain characteristics. Therefore, the control
parameters are required to satisfy certain constraints, that is

13



1P1 (a’,ﬁ,byéyttyyo) =0

W2(a56,6,6‘)tb;y0) =0
: (17)

lpm(a,B76,é’tb! VO) =0

where m = 6. Since the maneuver is defined by six control parameters, in general no
more than six constraint functions can be satisfied. For the burn time to be minimized,
the number of constraints must be less than the number of control parameters. As an
example it might be required that the final orbit have a semimajor axis a equal toa
constant a* and an inclination i equal to i*. The constraint functions would then be

vy =a(%g) - =0
(%) -1 o

where a and i are functions of the state -’Xf at the end of the burn and if isa
function of the controls through the equations of motion (egs. (16)). Since the values of

a and i are fixed in the final orbit, they are referred to as target parameters. The
minimization process targets to the specified values of these parameters while minimizing

the burn time.

There are any number of target parameters from which to choose. An obvious set
is the six Keplerian orbital elements a, e, i, w, £, and v. Others would include the
radius of periapsis Ty and the radius of apoapsis r,. The period of the final orbit is
a likely candidate. It might be required to establish the final orbit in such a manner that
the spacecraft would be at a given position at some future time. Therefore, the latitude,
longitude, and true anomaly of the spacecraft at a reference time should be included in
this list of target parameters.

Consider the requirement that the landing point on the surface be located at a pre-
scribed lighting condition or at a given latitude. The geometry of this situation is shown
in sketch 2.

14



Constant G

Final spacecraft
orbit

Toward Sun

Constant ¢

Landing point

Periapsis

Sketch 2

The landing point is arbitrarily defined to be at an angular distance 6 from periapsis
and within the plane of the final orbit. Since 6 is assumed constant, the landing point is
a function of only the orientation angles 1i,w,Q of the final orbit. Therefore, the
thrusting maneuver could be constrained to an orientation that places the landing point at
a prescribed latitude ¢. Similarly, the lighting angle G at the landing point could
serve as a target parameter.

Other useful target parameters are the hyperbolic impact plane param-
eters B- T B R Voo S. These parameters are defined in sketch 3 and reference 10.
The three unit vectors S,T,R form a coordinate system where S is parallel to the
incoming asymptote of the spacecraft orbit, T lies in the Mars equatorial plane perpen-
dicular to é, and R completes the triad. The miss vector B isinthe R-T plane
and represents the distance from the center of Mars to the incoming asymptote. It is

15
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Orbit trace

>

Mars equator
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asymptote

o
oo b3

Final hyperbolic -
orbit

>

Sketch 3

usually characterlzed by its two components BT and B-R. This set of parameters
B- T B. R S and the hyperbolic excess velocity V., completely specify the final
hyperbolic orbit. They are frequently more useful than the standard orbital elements
and, therefore, should be included in the list of target parameters.

The choice of specific target parameters determines the constraint equations which
enter the optimization process. As stated previously, no more than six constraints and at
least one constraint must be imposed. The choice of the individual target parameters is
important in that the ones mentioned are not all independent. As an example, suppose
that the three target parameters a,e,rp were chosen. Since a and e dictate the
radius of periapsis of the final orbit, it would be impossible to satisfy these three con-
straints unless the third constraint happened to be consistent with that dictated by the first
two. In general these three target parameters are dependent and would not constitute an
acceptable set of constraints. Therefore, the specific target parameters should be chosen
with care.

16



The areas in Project Viking which require optimum orbital transfer can now be
analyzed. Given the orbital elements of the original orbit and an initial guess on the
controls a,B,ﬁ,é,tb, Yo and the multipliers A, the necessary equations for a minimum
maneuver {eqs. (2) and (3)) subject to the desired constraints can be solved by the
Newton-Raphson iteration technique (eq. (7)).

COMPUTER PROGRAM VITAP

Program Description

The equations for an optimum, thrusting transfer between two Keplerian orbits and
their associated Newton-Raphson solution have been incorporated into a computer pro-
gram, VITAP. It consists of a main program and 11 subroutines which are written
entirely in FORTRAN computer language for the Control Data 6600 computer system.
The program resulted in a field length of 50 000g.

Various options have been included in VITAP which allow for a considerable amount
of flexibility. The option is available to vary the six control parameters a,B,é,é,tb,Vo
or to fix one or more of the controls at a constant value. For example, if the pitch rate
6 1is fixed at a constant value, the transfer maneuver is optimized with respect to the
remaining five control parameters. This option allows various guidance laws to be
considered. In addition a number of different target parameters are available as con-
straints on the optimum maneuver. In fact, as many as six constraints out of a set of
twenty can be selected. Thus, quite a large number of combinations of control variables
and target parameters are available. Program VITAP also operates in three modes.
The first mode is the normal optimum transfer outlined previously. The second mode
allows for the optimum transfer with the additional constraint that the inclination of the
final orbit be between an upper and lower bound. The third mode targets backwards.
This mode considers the problem of finding the best orbit from which to establish a given
orbit. Here the final orbit is completely known and the initial orbit is unknown, thus, the
term "'backward' targeting.

The computer time required to find the optimum transfer is important from a
practical consideration. It is easy to imagine the large number of computations which
are performed since the solution is iterative and contains the first and second numerical
partials of the target parameters with respect to the controls. These numerical partials
require that the equations of motion (eqs. (16)) be integrated repeatedly. If all six of the
controls are free, then 12 trajectories are required to compute the first partials and
61 trajectories for the second partials. Thus, the equations of motion must be integrated
73 times for a single iteration. In general the required number of trajectories is

17



1
(Zn + ﬁ + 1) where n is the number of free control parameters. The number of

jterations necessary to converge the initial guess to the optimum control vector varies
considerably depending on how good the initial guess is and the sensitivity of the solution.
However, when the convergence is slow, a large number of trajectories must be inte-
grated. Although many other calculations are performed, the majority of the machine
time is spent integrating these trajectories. For this reason the equations of motion
were expanded in a power series in time and are integrated in this manner. (See the
appendix.) This approach is much faster than the more standard numerical methods of
integration. To further decrease the machine time, the trajectories are divided into N
increments each of which is integrated with a 13-term power series. Thus, the duration
of each segment is tb/N where N =1,2,...,10. As a result of integrating by power
series, the computer program is not limited by machine time.

Program Input

All input to program VITAP is accomplished by means of a FORTRAN namelist
DAT. Each of the name list variables is defined in table I.

The combination of free control variables and desired target parameters is con-
trolled by an array of 12 integers. NOPT(1) to NOPT(6) correspond to «, B, 5, 6,
tp, and v,. If a 1is input in NOPT(K), then the Kth control is free to vary. A 0 denotes
that the Kth control is fixed and not allowed to vary from the initial guess which is input
by the GS array. For example, consider the case where the thrust vector is not allowed
to pitch but remains in a constant inertial direction throughout the burn. Obviously, the
three angles «,B3,0 (sketch 1) overdefine the problem since only two angles are needed
to define the inertial direction. To overcome this problem the angle S could be held
constant at 90° allowing « and & to function as the right ascension and declination
of the thrust vector, respectively. Thus, a constant inertial maneuver requires that
=0 and B = 90° throughout the maneuver. The appropriate input for the first six
integers of NOPT would be NOPT=1,0,1,0,1,1, and GS-=ay, 9., 84,0, tbl, Vol

where the subscript denotes the first guess at the controls. Mathematically, the number
of control variables is reduced from six to four so that the n of equation (7) is equal

to four. This is the equivalent of omitting two rows and two columns of the general
Newton-Raphson matrix of partial derivatives. An interesting point is the number of
trajectory integrations needed for each iteration. Since oniy 33 trajectories are needed
to calculate the partial derivatives instead of the usual 73, this case should use less than
half the machine time needed for the general case. The constraints imposed on the
optimum solution are defined by NOPT (7) to NOPT(12). At most VITAP will consider
six constraints which would correspond to 1 for NOPT(7) to NOPT(12). However, if

18



NOPT(6 + K) = 0, then the Kth constraint is not invoked. In other words NOPT turns the
constraints off and on by an input of 0 or 1, respectively. In this manner from one to n
constraints are considered where n is the number of free controls. In this example
where B and 6 were fixed the number of constraints must be four or less. The
specific target parameters are denoted by KOPT, an array of six integers each of which
have a value from 1 to 5. Table II defines the various options. The values of the target
parameters chosen are then fixed at the values in array AIN. Therefore, the constraint
is turned on by NOPT, the target parameter is defined by KOPT, and its value is input
by AIN. For example, suppose

NOPT=1,0,1,0,1,1,1,0,1,0, 0, 0
KOPT=1,2,1,1,1,1
AIN = 20488., 0., 10., 0., 0., 0.

From NOPT it can be seen that a,é,tb,vo are the free controls while B and 6

are fixed. In addition two constraints are considered. KOPT shows that the two target
parameters are a and i while AIN states that a* = 20488 km and i* =10°. The
zeros in AIN have no function since these constraints are turned off by NOPT. However,
the corresponding input in KOPT is meaningful since the values of the six target para-
meters chosen from table IT are printed as output. Note that one of the target parameters
in table Il is 1/a. This parameter is equivalent to a and provides a smooth transition
between hyperbolic and elliptical orbits.

The remaining input parameters of table I need little explanation. The five initial
orbital elements are defined by the CONI array. The sixth element, true anomaly, is not
input since it is a control variable. The GL array is similar to GS and contains the ini-
tial guesses on the Lagrange multipliers. As mentioned previously, the rate of conver-
gence is highly dependent on the initial guesses at the controls. However, the guesses at
the multipliers seem to have little effect on the convergence. If GL is not input, VITAP
fills the array with 1's which are acceptable initial values for the Lagrange multipliers.
The small increments in the control parameters Aai used to generate the numerical
partial derivatives (eqs. (13) and (14)) are defined by the HP array. The maximum allow-
able step size for the controls during the Newton-Raphson iteration Aoz"i‘ are defined by
the V1 array. The step size is then computed according to equation (11). Values for both
HP and V1 are built into the program and seldom need changing. However, these values
may be altered at any time by the appropriate input. The number of segments used to
integrate the equations of motion by power series is input through NSTEPS. If the total
burn time tp, is 1800 seconds and NSTEPS is 6, then VITAP integrates in 300-seconds
segments with a 13-term power series, the initial conditions for the second segment being
the end conditions of the first segment. A reasonable input value for NSTEPS is one

19



which results in about 300~ to 400-second segments. The accuracy of the trajectory,
however, can be improved by increasing NSTEPS at the expense of machine time. The
three parameters describing the spacecraft are mass, mass-flow rate, and thrust which
are input according to table I. The gravitational constant of Mars p is stored in VITAP
as UMARS = 42828.4 km3/ sec2 but can easily be changed by input. Some of the target
parameters of table II require additional input other than just the value input through the
AIN array. For example, all the target parameters related to a reference date require
two Julian dates, the time at which the spacecraft would reach periapsis on the initial
conic and the time at which the target parameter is to have the given value. These two
time parameters are PERJD and REFJD, respectively, and need be input only if the time-
related target parameters are exercised. To constrain the latitude of the landing point,
the angle 6 must be input through PER. In addition, if the lighting angle G is one of
the objects of the targeting, then the right ascension and declination of the subsolar point,
SLONG and SLAT, must also be input. Once all the input is defined, the program VITAP
uses the initial guesses at the controls and multipliers to start the Newton-Raphson itera-
tion technique which continues until one of two situations occurs. If the sum of the errors
(eq. (12)) is less than the value of € which is input through ERR, then the process is
assumed to have converged at the optimal set of controls and the solution is completed.
On the other hand, if the number of iterations exceeds the input value of MAXIT, the pro-
cess is considered nonconvergent and is stopped.

Finally, the mode of operation must be defined as 1, 2, or 3 by the input parameter
MODE. The normal targeting mode (MODE = 1) is straight forward. The initial orbit is
specified by ag,eq,ig,wg,0 along with the desired target parameters. The program
VITAP finds a control vector @ which maneuvers the spacecraft from the initial orbit
to the final orbit which satisfies the target parameters. If there is at least one more
free control than target parameters, VITAP minimizes the burn time — or equivalently
the required fuel — by the Newton-Raphson technique (eq. (7)). If the number of target
parameters is equal to the number of free controls, the solution is a straight forward
search without minimization (eq. (10)). To target the inclination within bounds, the second
mode (MODE = 2) is used. This search is similar to mode 1 with the restrictions that the
inclination of the final orbit must not be specified as a target variable and the number of
free controls must be greater than the number of target parameters. If the inclination
constraint option NOPT(9) is not equal to 0, it will be set equal to 0. First the program
finds the optimum controls which will result in some inclination i;. This inclination is
then compared to the two boundaries specified by the input parameters BOUND(1) and
BOUND(2). If the inclination is between these bounds, the solution is complete; if it is
outside this interval, the program retargets to the closest bound. With the addition of
another target parameter i, the second solution may no longer be a minimization.
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The third option (MODE = 3) is more involved than the other two. It has been
termed backward targeting and finds the best orbit from which to establish a given orbit.
The only change in input involves the CONI array. Instead of CONI containing the initial
orbit, for mode 3 it contains the final orbit while the initial orbit is partially defined by
the target parameter options of table . Thus, the final orbit is completely defined
except for the true anomaly and the initial orbit is only partially defined by the target
parameter constraints. The targeting problem, then, is to find the remaining initial
orbital elements such that a transfer from this orbit to the given orbit is optimum. 1t is
solved with the same mathematics as mode 1 with some changes in procedure. The pro-
gram internally changes the input and considers the motion from the final orbit to the
initial orbit. When the motion is reversed the final orbital elements become a,, eq,
1800-ip, ©4,+180°, and 180°-w, which is due to the interchange of the ascending and
descending nodes. The initial mass of the spacecraft on the initial orbit is known from
input, but the mass on the final orbit is not known since the optimum burn time has not
been established. It is obvious that the spacecraft will lose mass during the transfer from
the initial to the final orbit. Equation (15) can be used to predict the mass in the final
orbit as my = mg + rhtb, where mg is the initial mass and t;, is a guess at the'burn
time. The initial guesses at the controls are changed internally to «, 8, 6+étb, -0, tp, ~Vo
due to the reversal in motion. The program then uses the corrected orbital elements
and controls to integrate the equations of motion which results in some initial orbit
which neither satisfies the constraints nor is optimum. The guesses at the controls
are then corrected according to the Newton-Raphson matrix, and the iteration procedure
continued until the solution is obtained. The only difference between this procedure and
the normal procedure is that the mass mg in the final orbit is corrected for each itera-
tion according to the change in burn time t;. Therefore, the solution is complete when
both the controls and mass have converged. For this reason the backward targeting con-
verges much slower than the normal targeting.

Program Output

The computer outputs for each of the three modes of operation are presented in
tables III, IV, and V.

The normal targeting mode (MODE = 1) is presented in table III. The first output is
a complete listing of all of the parameters input through the namelist DAT. These param-
eters have been previously defined in the section entitled ""Program Input'' and in table I.
Next is a formal listing of the mode of operation, the initial orbital elements, and a
description of the free control parameters and the selected target parameters. It can be
seen that the initial conic is a hyperbola and that the initial guess at the true anomaly is
-600. The program will find a subset of four controls (a,é,tb,vo) such that the final
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orbit has a prescribed value of a (or l/a), i, and w. Since there are more control
variables than target parameters, the program will find the controls which minimize

tbz. When four controls are varied to find three parameters in the final orbit, the opera-
tion is said to be a 4 by 3 search.

The search or iteration is recorded by a selected set of output parameters. The
first, second, and last iterations are shown in table ITII. The control parameters for the
first iteration which are the initial guesses are shown followed by the initial guesses at
the Lagrange multipliers. Next, is presented the orbit which resulted from applying the
initial controls to the initial orbit. The corresponding target parameters are then output
which are naturally in error since the initial guess at the control variables was not the
optimum set. The sensed velocity corresponding to tp is output followed by the error
in the target parameters. The sensed velocity is the integral of the acceleration due to
thrust, that is

tp y
AV = Thrust dt = Thrri'lust 1n<m° + mtb) (18)

0 mgy+ mt mgq

and the errors in the target parameters are the differences between the desired values
and the values obtained from the present set of controls. For example, from the input
it can be seen that the inclination of the final orbit is 35°. This is denoted by the third
entry in the AIN array. However, the initial controls produced an orbit with an inclina-
tion of 33.3280, Thus, the third target parameter is in error by 1.672°. Note that three
of the target parameters e,Q,v; have zero error because the second, fifth, and sixth
target options were not exercised as can be seen from the NOPT array. The errors in
the target parameters are then used to improve the initial guess at the controls (eq. (7)).
The corrections to the initial controls are in the next line of printout. Two points should
be made about these corrections. First, no correction is addedto 8 and 6 because
zeros were input in the NOPT array in the locations corresponding to g and é; thus,
the program does not allow S and 6 to vary but keeps them fixed at the initial values
which for this iteration were 90° and 0. deg/sec, respectively. The second point is that
the corrections to the controls were limited by the maximum allowable step size in vg.
According to the V1 array, the step in true anomaly for one iteration cannot be greater
than 159, Since the correction is exactly 15°, this implies that the Newton-Raphson
technique (eq. (7)) calculated a larger correction and that the corrections were reduced
according to equation (11). At the end of this block of output is a row labeled
"Eigenvalues of second partials of augmented function." This row represents the eigen-

values of the upper left-hand portion of the matrix composed of partial derivatives
og. 2

(eq. (7)). In other words, they are the eigenvalues of the matrix —* or _F
oa. 8ai oo,

]
These values are used as a diagnostic tool.
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The printout of the second iteration follows the same format as the first iteration.
The control parameters and the Lagrange multipliers have been updated by the correc-
tions computed in the first iteration and should produce a final orbit that is closer to the
optimum solution. However, due to the interplay between satisfying both the constraint
equations and the necessary equations for a minimum, it is not always apparent that the
succeeding iterations are closer than the preceding ones. For the case being considered
the second iteration does, however, seem to be closer to the solution. The errors in two
of the target parameters i,w were reduced while the error in 1/a increased slightly.
In addition, the sensed velocity was reduced. As before the errors in the target param-
eters are related to the corrections in the control variables and the iterative process
continues.

The Newton-Raphson technique is repeatedly applied until both the constraint equa-
tions and the necessary equations for a minimum are satisfied (eq. (12)). The 29th
iteration shows that the process has converged since the errors in the target parameters
are very small and the computed corrections to the control variables are negligible. The
optimum set of controls, then, are listed in the first line of printout. They not only pro-
duce a final orbit with the desired target parameters l/a, i, w but also establish it with
a minimum of fuel. Since the eigenvalues of the second partials of augmented function
are all greater than zero, this is indeed a minimum solution. As a point of interest the
Newton-Raphson matrix and its inverse (eq. (7)) are output for the last iteration. The
matrices presented are the full 12 by 12 matrices. The zero rows and columns corre-
spond to fixed control parameters and to the constraints that were not exercised.
Accordingly, these matrices are reduced to the proper dimensions during the actual
computations. The final output is the machine time in seconds required to compute the
optimum set of control parameters.

Table IV presents a sample case of targeting such that the inclination is within
bounds (MODE = 2). The second mode of operation is similar to the normal targeting
mode and allows for the optimum transfer with the additional constraint that the inclina-
tion of the final orbit be between an upper and lower bound. The procedure is first to
disregard the inclination constraint and solve for a set of optimum controls. If these
controls produce a final orbit that satisfies the inclination inequality, then the solution
is complete. If this is not the case, the program then determines which inclination
bound is closest to the present solution and retargets to that value of inclination. This
procedure is demonstrated in table IV. The transfer is from a hyperbola to an ellipse
and is a 6 by 4 search. It is necessary that the number of control parameters exceeds
the number of constraints since the inclination will be added as a constraint if it is not
within bounds. Also note that inclination is a free variable for the first part of the solu-
tion and that the final orbit is specified by a, e, w,and . The program proceeds
to tanget to a, e, w,and Q. After 12 iterations, the optimum controls are found
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which produce a final orbit with an inclination of 35.28°. From the input it is seen that
the constraint on the inclination is 310 = ig = 350, Thus, the inclination constraint was
not satisfied by targeting to a, e, w,and $£. The program then proceeds to turn

on the third constraint option (NOPT(9) = 1), define the value of the inclination constraint
as the closest bound (AIN(3) = 35.), and set the initial guesses at the controls and
Lagrange multipliers equal to the values obtained in the first search. These changes can
be seen by comparing the first and second listing of the namelist parameters. The pro-
gram then proceeds to solve this 6 by 5 search and after 6 iterations converges to the
optimum set of control parameters.

The third mode of operation, backward targeting, is presented in table V. This
mode (MODE = 3) considers the problem of finding the best orbit from which to establish
a given final orbit. For the particular case shown the final orbit is an ellipse specified
by the five orbital elements a, e, i, w,and . The initial orbit is only partially
specified by three hyperbolic parameters: the hyperbolic excess velocity, the declination
of the approach asymptote, and the right ascension of the approach asymptote. These
three parameters are designated as target parameters. The problem, then, is to deter-
mine the remaining hyperbolic elements and a set of controls so that when these controls
are applied to the approach hyperbola the resulting orbit will be the given ellipse. In
addition the fuel required for the transfer is to be a minimum. The procedure, as out-
lined previously, is to target backwards from the final ellipse to the initial hyperbola.
This reversal of motion is handled internally by the program with one exception. The
initial guess on the true anomaly at the start of the burn v, is replaced by a guess on
the true anomaly at the end of the burn. That is, the input value of vy is 45° which is a
guess at the true anomaly in the ellipse where the burn will terminate.

The printout of the first iteration shows the result of reversing the motion and
applying the intital controls to the ellipse. As would be expected the hyperbolic excess
velocity, the declination of the asymptote, and the right ascension of the asymptote are all
in error. These errors are used to correct the control variables. One main difference
between this mode and the others is the problem associated with the mass of the space-
craft. In order to integrate the equations of motion from the ellipse to the hyperbola, the
mass of the spacecraft in the ellipse must be known. The mass, however, is a function of
the burn time t, required to establish the ellipse, and this time is not known until the
solution is complete. Thus, an estimate of the mass in the ellipse is computed as a func-
tion of the present value of the burn time. This estimate is included in the output under
the heading "FINAL MASS." Therefore, the iteration process must converge the final
mass as well as the set of control variables. This additional requirement slows the
iteration process considerably. For the case considered here the program required
46 iterations to converge the initial controls to the final set of optimum controls. The
"best"" hyperbola for such a maneuver is given by the third line of printout.
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CONCLUDING REMARKS

This report has described a program for determining the minimum -burn-time,
thrusting, transfer trajectory between two Keplerian orbits. Basically, the method
described involves the solution of a constrained minimization problem by use of constant
Lagrange multipliers and the Newton-Raphson iteration technique. The model of the
transfer trajectory allows for the thrust vector to rotate in a plane with a constant pitch
rate. In all, six control parameters characterize the transfer trajectory; thus, as many
as six constraints can be imposed on the final orbit. If the number of constraints is less
than six, the program solves for the set of controls which minimizes the burn time or
equivalently the required fuel. The option is available to fix any of the six control vari-
ables and allows various guidance laws to be investigated such as a constant inertial burn.
This option together with the twenty different constraints from which to choose allows a
considerable amount of flexibility. In addition the program VITAP operates in three
modes. The first mode is the normal optimum transfer, the second mode is similar to
the first with the additional constraint that the inclination of the final orbit be between an
upper and lower bound, and the third mode targets backwards. This mode considers the
problem of finding the best hyperbola from which to establish a given ellipse. These
three modes of operation have been exercised extensively for representive 1975 Mars
orbital insertion maneuvers.

The program uses only necessary conditions for a minimum. Accordingly, there is
no guarantee that the solution obtained will be a minimum. If, however, the eigenvalues
of the matrix corresponding to the second partials of the augmented function are all posi-
tive, then the solution is indeed a local minimum. This particular problem of using only
necessary conditions offers no great difficulty when there is a judicious choice of trajec-
tory constraints and reasonable initial guesses on the control parameters.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., March 5, 1971.
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APPENDIX
POWER SERIES EXPANSION OF EQUATIONS OF MOTION

The most time consuming computation in the Viking Targeting Analysis Program
is the numerical integration of the equations of motion. Since numerical partial deriva-
tives are used in the Newton-Raphson technique, the equations of motion are integrated
repeatedly. For this reason the equations of motion are numerically integrated by power
series which are considerably faster than the more standard numerical methods.

The power series solution of the two body equations of motion have been solved by
Schanzle (ref. 11). The governing differential equations for two body motion are

% = Z#X (Ala)
3

y= 1“3—y (Alb)
r

7= L%E (Alc)
Ir

where
1/2
r= (xz +y2 4 zz> / (A2)

and u is the gravitational constant. The trajectory model considered for the Mars
maneuvers requires the addition of acceleration terms which are due to the low thrust
(nonimpulsive) engine. Therefore, the equations of motion for the finite burn are

(egs. (16))

% = _-_u3_x + a(t) E:os (646t) cos a - sin (6+6t) sin a cos é' (A3a)
r

y = _—_%y_ +a(t) E:OS (5+6t) sin @ + sin (6+6t) cos a sin 6] (A3Db)
r

7= 132 + alt) [sin (6+t) sin g] (A3c)
r

where aft) is the magnitude of the acceleration and is given by

Thrust (A4)

a(t) B mg + mt
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APPENDIX — Continued

The following definitions will simplify the solution of the equations of motion:

i}

1
b=3
Ax(t) = af(t) [cos (6+0t) cos a - sin (6+0t) sin o cos B:l
Ay(t) = af(t) [cos (6+6t) sin o + sin (6+6t) cos a cos él
Ay(t) = a(t) [sin (640t) sin g

Therefore, equations (A3) can be written as

i: "'IJabX'I‘Ax

« 2
1l

-uby + Ay
z = -ubz + A,

for which the assumed solution is

i=co

X = Z Xitl
i=0
i:OO
y= ) yt'
i=0
i:OO
zZ = Zitl
i=0
i:OO
r = ritl
i=0
i:OO
b= ) bt
i=0
i:OO
Ay = Ax,itl
i=0

(A5)
(A6a)
(A6b)

(A6c)

(ATa)

(ATb)

(A7c)

(A8a)

(A8b)

(A8c)

(A8d)

(A8e)

(A8f)
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APPENDIX — Continued

1=c0
- ) Ayt (A8g)
=0
j=c0
A, - Z Ay it (A8h)
i=0

The three position coordinates x,y,z along with the radius r, the parameter b,
and the acceleration components AX,Ay,Az are assumed to be represented in some
neighborhood of assumed values by Taylor series expansions. Taylor series or power
series will be used interchangeably in this appendix which can be justified by Theorem 39,
page 354 of reference 9. The sufficient conditions for convergence of the particular
series are covered, at least for the two body case, by Schanzle (ref. 11) and should be
easily extendable to the present case of a constant thrust and constant mass-flow-rate
burn. In fact, the convergence of the series for the acceleration terms of equations (A3a)
to (A3c) is trivial, being the multiplication of the series for the sine and cosine of 6t,
which is absolutely convergent everywhere, by the series for a(t), which is absolutely
convergent for t<mo/m. (See ref.9.) Of course, t cannot get as large as mg/m
which corresponds to the spacecraft mass becoming zero.

In order to obtain the solution to equations (A7a) to (A7c) it is necessary to evaluate
the coefficients of equations (A8a) to (A8h). The three series for the acceleration terms
(eqs. (A8f) to (A8h)) are determined from equations (A6) while the series for x, y, z,
r,and b are determined by means of recursive equations. The following general for-
mula will aid in this development (ref. 12),

j=o0 \ i=o0 ) i=oof k=1 )
Z pitl Z qitl = Z Z Pr9i_k t! (A9)
i=0 i=0 i=0\k=0

where p and ¢ are the coefficients of the general power series. The recursive equa-
tion for x can be developed as follows. Differentiating equation (A8a) twice gives

i=c0

% = Z i(i-1)x;ti2
0

and then substituting into equation (A7a) along with equations (A8e) and (AS8f) yields

i=c0 ] j=c0 ) j=c0 ) j=c0
z i(1-1)x;ti ™2 = -y Z b;t! z xt'| + Z Ag it!
i=0 i=0 i=0 i=0
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APPENDIX - Continued

Changing indices on the first summation gives

i=e0 j=co j=00 j=c0
g i i i I
(i+1)(i+2)x349t = -1 Z bjt z xitt) + Z Ag it (A10)
i=0 i=0 i=0 i=0

or by use of equation (A9) it may be rewritten as

1=c0 . j=oo k=i ) i=oo .
Y GGt = -uy Y byt + ) Agth (A11)
i=0 i=0 k=0 i=0

Equating the coefficients of the nth power of t gives the recursive equation for the coef-
ficients of the x series, that is

k=n
(n+1)(n+2)xp 40 = -4 z byxp, i + Ax,n (A12)
k=0

The recursive equations for y and 2z are similar. Therefore, the three recursive
equations for the coefficients of the x, y,and z series are

k=n
Tl )
X = - Xn-k + A Al3a
042 7 (14 1) (n42) uk—O P¥n-k + Ax,n ( )
k=n
D
Yn42 (n+1)(n+2) uk—O OyeVn -k Y, ( )
k=n
even k)
Z =——|-n Zo 1.+ A (A13c)
n+2 (n+1)(n+2) =0 Pk Zn

where Xxg, Vg, 2Zg are the components of its initial position and x4, yj1, %y, are the
components of the initial velocity.

The recursive equation for r is found by differentiating equation (A2), that is
IT = XX + VY + 2%

and by substituting equation (A8a) to (A8d) to yield
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APPENDIX — Continued

i=oo j=co i=oo j=oo j=vo j=oo
Z riti Z (i+1)ry _H‘ti = Z xiti Z (i+1)xi_,_1ti + Z yiti (i+1)yi +1ti
i=0 i=0 i=0 i=0 i=0 i=0
j=o0 j=co
+ E zi’ci Z (i+1)zi_|_1ti
i=0 i=0

Multiplying the series together by equation (A9) and equating the nth power of t gives

k=

n k=n
(k+ 1)1y g = Z (k+1)(xk+1xn_k + Vi1 Vnk + Zk+1zn-k)
0

k= k=0

Removing the nth term from the summations produces the recursive equation for the coef-
ficient of the r series, that is

1
T'n+l = ml}n+1)(xn+lxo + Yn+1¥o + Zn+lzo)

k=n-1
+ Z (k+1)(xk+1xn~k * Yke1Vn-k * Zke1Zn-k " rk+1rn—k):] (A14)
k=0

where

rg = (x(z) + yg + zg> 172

) (xox1 +Yo¥q + ZoZ1)

To

1
The recursive equation for b is found by differentiating equation (A5), which gives
rb = -3bf

In a manner similar to that used to develop the recursive equation for r one obtains the
recursive equation for b as

k=n-1

1
bnil = =y -3(n+1)ry, 1bg - Z (k+1)(3rk+1bn—k + bk+1rn-k> (A15)
(n+1)ry o
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APPENDIX — Continued

where

—3b0r
bg = —1—3- and bl = 1

To

Through equations (A13), (A14), and (A15), the coefficients of the assumed series solution
to the differential equations of motion can be found which lead directly to the state of the
spacecraft at time t by evaluation of the power series. The only remaining development
is the series expression for the three acceleration terms.

The power series expansions of the three acceleration functions are most easily
accomplished by considering the product of two series, the first of which is af(t). Expan-
sion of the magnitude of the acceleration (eq. (A4)) yields

j=c0 X
. * i .
a(t) = L‘lStt = Thrust E (-1)1< L 1>t1 (A16)
i=0

Y i+
mo + m m,

The second series are the direction cosines which can be rewritten by use of the general
trigonometry summation formulas as
E:os (6+6t) cos a - sin (6+6t) sin o cos B] = Fq cos ot + F9 sin ot
E:os (6+6t) sin « + sin (6+6t) cos o cos é‘ = Fg cos 0t + F4 sin ot
I:sin (5+ét) sin él = F5 cos ot + Fg sin 6t
where F; is a constant and is given by
Fq=cos @ cos d - cos 8 sin a sin d
Fg=-cos @ sin 6 - cos B sin @ cos O
Fg=sin @ cos & + cos Bcos a sin §
Fy=-sin o 8in  + cos Bcos a cos b
F5 = sin B sin &
Fg=sinfBcos

The definitions for sin 6t and cos 6t can be given in terms of a power series as
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j=o0 1T\ Aigi
23:3  35:5 s1n( )6 t
sin ft = 0t - £+ £1 =) 2
i=0
i=c0 im) pigi
: 2.2 pdid cos(—)e t
cos9t=1-i2—§— 9_4%_ ..=z ____12'____
i=0
Therefore the three acceleration functions can be written as
(i e | sin(f)d cos()3)
A, (t) = | Thrust Z Z F1 - + Fy = t
2 mo " |li=0 L 1
_ j=o0 . i 1? j=oo [ S1n<i—ﬂ)91 COS(i—ﬂ)Gi—
A, (t) = | Thrust (- ).m t F _2 + Fy ,2 il
y m 1+1 3 i! i!
L i=0 0 i=0 L _.I
=2 yigid] K[ em(F)ecos(F)e
Ay (t) = |Thrust Z =g Fg = + Fg > th
i=0 ™Mo | |i=0 L _

APPENDIX -~ Concluded

Multiplication of the two series by the general formula of equation (A9) yields the desired
power series expansion for the three acceleration functions as follows:

Ax(t) =

Ay(t) = Thrust z

A,(t) = Thrust Z
i=0

32

k=i

)

k=0

j=oc0

Thrust Z

i=0

j=o0

k=i

)

i=0 | k=0

j=c0

k=i

-

k=0

9k kw )'kr S el il
e sin(5E)P « a cos(5) ayi-kniokl|
k! m_ i-k+1
n | o
F3 sm( >9k + Fy cos(kﬂ) gk (-1)i-kpmi-k|
\2/ N\
k! J moi—k+1
km\ sk ) o]
F5 sm(2 )9 + Fg cos(l; F(-l)l'kfnl_'_k d
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TABLE 1

DEFINITION OF INPUT PARAMETERS FOR PROGRAM VITAP

Program Mathematical . . . ags
symbol symbol Dimensions Units Definition
NOPT 12 None Integer array denoting free control variables and selected target
parameters, NOPT(1 to 6) corresponds to a,ﬁ,ﬁ,é,tb,vo;
. NOPT(K) = 0 for Kth control fixed and NOPT(K) =1 for Kth
: control free where K =1,2,...,6; NOPT(7 to 12) corresponds
to lPl,ll/z,. . .,we; NOPT(K+6) = 0 for Kth constraint omitted;
i NOPT(K+6) = 1 for the Kth constraint considered
| KOPT ! 6 None Integer array denoting the specific target parameter chosen (see
i ! table IT)
AIN 1 6 km, sec, Array of values for target parameters denoted by KOPT
, or deg
CONI 84,€0,10: W0, 80 l 5 km or deg Orbital elements of initial orbit; ay <0 for hyperbola
GS '071 6 deg or sec Initial values (guesses) of controls a,B,t‘),é,tb,uo (see
sketch 1); these values will vary or remain fixed depending on
! NOPT(1 to 6)
GL Xl 6 Initial guesses on Lagrange multipliers; if not input,
| GL(1to 6) =1,
HP Aay 6 l deg or sec Increments of controls for numerical partial derivatives; if not
input, HP(1 to 6) = 0.6, 0.6, 0.6, 0.006, 1, 0.6.
Vi Aa’; 6 deg or sec Maximum allowable step size for controls during Newton-Raphson
iteration; if not input, V1(1 to 6) = 15., 15., 15., 0.0015, 50., 15.
NSTEPS 1 None Integer denoting number of segments used for power series
solution to equations of motion; if not input, NSTEPS = 10.
MASS mg 1 . kg Initial mass of spacecraft
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TABLE I - Concluded
DEFINITION OF INPUT PARAMETERS FOR PROGRAM VITAP

Program Mathematical . . : © e
symbol symbol Dimensions Units Definition
DMASS m 1 ke/sec Mass-flow rate
THR 1 kN Thrust of the spacecraft propulsion system
PERJD 1 days Julian date of periapsis passage on initial conic
REFJD 1 days Reference Julian date for constraints of longitude, latitude, and
true anomaly at a reference time; PERJD and REFJD need not be
input if these constraints are not used
PER 6 1 deg Angular distance from periapsis to landing point (see sketch b)
SLAT 1 deg Declination of subsolar point in areocentric equatorial coordinate
system
SLON 1 deg Right ascension of subsolar point; Input SLAT and SL.ONG only if
KOPT(5) = 5
ERR € 1 None Newton-Raphson convergence criteria (see eq. (12)); if not input,
ERR = 10-6
MAXIT 1 None Integer denoting maximum number of iterations allowed; if not
input, MAXIT = 50.
UMARS i 1 km3/ sec? Mars gravitational constant; if not input, UMARS = 42828.4
MODE 1 None Program mode:
1 - normal forward targeting;
2 - forward targeting, inclination within bounds;
3 - backward targeting
BOUND 2 deg Bounds on inclination for MODE = 2; BOUND (1) is lower bound
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TABLE I

TARGET PARAMETER REQUEST KEYS

Input Input parameter
value KOPT(1) KOPT(2) KOPT(3) KOPT(4) KOPT(5) KOPT(6)
[ a e i w Q f
L |
; l ! |
2 | 1 i Tg dLatitude at aLongitude at 21.ongitude at 2True anomaly at '
a reference date | reference date reference date k reference date
s ry ry BT Al atitude at aLatitude at a1 ongitude at
‘ (see sketch 3) reference date reference date reference date
| |
4 | Orbital period | B-R bDeclination bRight ascension 1
| (see sketch 3) of § of § |
| : | 5
i ; |
P55 v, L CLatitude of ' dLjghting angle at
L t ; landing point, ¢ | landing point, G

@Value of PERID and REFJD must be input (see table I).

b § = Incoming hyperbolic asymptote (see sketch 3).

€Value of PER must be input (see table I).
dvalue of PER, SLAT, and SLON must be input (see table I).



$DAT
NOPT
KaPT
AIN

CONT

GS

GL

HP

vi
NSTEPS
MASS
DMASS
THR
PERJD
REFJD
PER
SLAT
SLON
ERR
MAXIT
UMARS
MODE
B8OUND

$END

LE

TABLE III
SAMPLE OUTPUT FOR NORMAL TARGETING MODE
[:Mode = 1_]

1 Cy 1y Oy 1, 1, 1y 0Oy 1y 1y Cy C,
29 1y 1ls 1y 1y 1,
J+4EE878024932E-C4, 04Cy 0.35E+02, 0,13C38E+03, 0.0y 0.0,

~064629C56E+C4y C.1STC4E+0L, 043531E+C2y 0.129069233511E403,
0.3C3C7182204€E+C3,

=0e5E4C2y Ce9E+02, 042E+02y 0e0y 0e424E+04, ~C.6E+02,
De1E+Cly Co1E+01, O.1E+Cl, OQ.1E401, O0e.1E+Cl, C.1E+O0l,
Qe 6E+CCOy 0Qo6E+0C, 0.6E+00, C.6E~03, O0.1E+01, O0.6E+00,
J¢15E402y 0Q415E+C2y Co156+02, C.15E~02y (o S5E+02, 0.,15E+02,
8y

D3 20655E+C4,
~0.4172E+QC,

D412345E+C1,

I,

3.0,y

| )

1,

1,

0e1E-CT7,

50,

0.428284E+05,

1,

0.0, 0.18E+403,
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*xxANORMAL TARGETING (MODE=1)4%%»

INITIAL CONIC

SMA -483G,086C ECC 1.%7C4000
THE CONTROL VARIABLES ARE ALPRA
THE TARGET VARIABLES ARE 1/SMA
ITERATICAM 1
CONTRCL FPARAMETERS
ALPHA BETA
~50.€C00CCCO00 90.£C0CCCCQ00
LAGRANGE MULTIFLIERS
1.000030CC0C0 Oe

ORBIT OBTAINED FROM PRESENT CCATRCLS
SMA  68€36.103 ECC .93C9C775

TARGET PARAMETEFS
1/7SMA ECC
1,456559179706E-05 «53C30774€419
DELTA V 1.23€€143
ERRORS I[N TARGET VARIABLES
1/5MA ECC
30431821C€5€14E-05 O,

CORRECTICNS TO CCNTRCL VARTABLES
ALPHA BETA
-9.51246518435 Oe

EIGENVALUES OF SECOND PARTIALS OF AUGMEN
7.64146282570+01 2.00004378900+00

TABLE III — Continued

VIKING TARGETING ANALYSIS PROGRAM (VITAP)

INC  35.310000 PER  129.06923
CELTA TBURN TASTART
INC PERI
DELTA THDOT
204CCCCCOCOCC Oe
l1.ccccccoccce 1. 00000000000
INC  33,327990 PER 139,78924
INC PERI
33,2279901121 135,789236539
INC PERI
1.672CCS8E654 -9.40923653906
OELTA THDOT
641C64€498221 O

TED FUNCTICN
~2.981£2333940+(1

-545182930724D+01

NGO  303.07182Z

TBURN
2400,000C€0000

Ce

NOD 307.84094

NODE

307.8409434S87

NODE

0.

TBURN
~17.66C69281C5

TAN

TAN

~60,000000

TASTART
-60.0000000000

0.

2374890110

TAN

37.8901097288

TAN

Q.

TASTART
-15,0000000000
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ITERATICN 2

CONTROL PARAMETERS
ALPHA
=5949124657843

BETA
90.£C0OCCC0000

LAGRANGE MULTIPLIERS
-5€4455,121282 0.

ORBIT OBTAINED FRCM PRESENT CCATROLS
SMA  1326€42.86 ECC .96780569

TARGET PARAMETERS
1/754A ECC
Te529C396€2114E-C6 «567805693215
DELTA V 142241060
ERRORS IN TARGET VARIABLES

1/5MA ECC
441348762€2009E-CS O,

CORRECTICNS TQ CCNTROL VARIABLES

INC

TABLE III — Continued

DELTA
264106464822

B,408455838¢€1

364227467 PER

INC
36.,2274665¢€1°¢

INC

~102274669€148

DELTA
6477719297418SE~C2

1.9596762086C+C0

DELTA
22.53£€363285

5565C,9C37335

ALPHA BETA
2. £5722320499 0.
EIGENVALLES OF SECCND PARTIALS OF AUGMENTED FUNCTICN
142€5227882E0+403 1.95235341856D+02
ITERATICA 29
CONTROL PARAMETERS
ALPH2 BETA
-25.61732438575 9C.C0CCCOC000
LAGRANGE MULTIFLIERS
~471E33505555,7 0.
ORBIT OBTAINED FRCM PRESENT CCATRCLS
SMA  2045%.00C ECC 76436452

TARGET PARAMETERS
1/75MA ECC
4.888780249287E-CS «1€4364521465
DELTA V 1.27C€E39
ERRORS IN TARGET VARIABLES

1/SMA ECC
34267785347€TLE~16 O

CORRECTICNS TO CCNTRCL VARIAELES
ALPHA BETA
3.012653414970E-11 O,

INC

35,000000 PER

INC
35.€00000CCCC

INC

~2.128484105319€-12

DELTA
6. (6594938€E672E~11

EIGENVALLES OF SECGND PARTIALS OF AUGMENTED FUNCTICN

2443411942520+07 1,28835964780+07

3.83341E7041D+4C6

THDOT
O.

—+7661(8102041

138,67499

PERI

138,674993190

PERI

-8429499319019

THDOT
0.

=1.1344834257D0+02

THOOT
0.

101.077861597

130.38000

PERI

130. 380000000

PERI

1,909938873723E~-11

T+DOT
Oe

14 96485702520+00

TBURN
2382433920719

C.

316423571

NODE
316.2357C5212

NOCE
Ce
TBURAN
-50.000C0C0CAQ
TBURN
2453,84069840
C.
303.97940
NODE
303,9794C05¢9
NODE
0.
TBURN

3.215712718649E-09 ~2,175990898215€-10

TAN

TAN

TASTART
~75,000C000000

0.

351464946

TAN

3514649461687

TAN

0.

TASTART
«14261C856923

TASTART
~63.8506518549

0.

400321847

TAN

40.2218474563

TAN

0.

TASTART



4

NEWTON REFPESCN MATRIX

1426T7E+CT
Oe
54835E+05%
0.
=2.0T9E+03
-74553E+(C6
44504E-C6
0.
3.9C4E+ (O
-2.946E+C1
0.

Oe

INVERSE
4.539D-C9
0.

44 479D-C9
0.

-1.930D-16

-1.273D-C8
4e42904C2
0.

1. 044D-C1

-1e473D-C2
O
0.

D
~2.E78F-C1
Ce
Ve
0.
Je
Te
Jde
Oe
Je
0.
Oe

Oe
0.
Je
0.
O
Je
s
Je
00
Oe
Oe
Do

TIME FOR THIS (ASE

54835E+(5
0.
1.411E407
0.
=1.9C5E+(C3
-6.EBBE+CE
-8, TEEE-CE
O
-7.,43€E+CO
~4,25€6E+01
0.
Qe

44475D-C9

O
4e42CD-C9
0.
~1.90£C-16
-l.256C-(8
245380+4C1
Oe
-B8.195C-02
~54622C-03
Oe
Oo

224740

-24878E+05
Ce
Ce
Ce

Ce
Qe
Oe
Q.

C.
Ce

O
O.

[N

TABLE III - Concluded

~24079E+C3
Ce
~1e9CEE+C3
Ce
3. 26CE+CC
44330E+03
le02CE-C7
Ce
~4,834E-04
~54221€E-03
Ce
Ce

-1+93CD-16
0.
~1le9CED-16
Ce
8.21CD~-24
5¢4130~16
Ge747D+C6
O.
-1.140D+C1
-2,CeCC-02
0.
Ce

~7.553E+06
O,
-€.888E+C6
C.
44230E+403
1.428E+07
=1.486E-C6
Ca
=14225€+00
-2.549E+01
0.
0.

-1,273p-08

Ce
-1,256C-C8
C.
Se413C-1¢€
3.569C-08
~2.5850+03
0.
1.850C-02
-1.,2810-02
C.
C.

44504E-06
Q.

-E. 78BE-06
0.
1.020E-07

-1l.4B6E-06
O
0.

O
Oe
Qe
Ce

444290402
Qe
2.5380+401
0.
97470406
-2.5890+03
=1e916D+14
0.
~342770+08
9.418D+07
0.
Qe

O
Qe
0.
Oe
Oe
Oe
0.
0.
Ce
Qe
0.
Oe

Ce
Ce
Oe
0.
Qe
Oe
[}
O‘
0.
O

O

3.904£+00

Qe
~7.436E+0C

0.
~44834€E~04
~1.225E+00

O

O.

O.

Oe

C.

Qe

1.0440-C1
0‘
-841950-C2
0.
-1.140C+01
1.850C-C2
=3.277D+C8
Ce
-24165C+C5
1.C190+C4
0.
[«

=-2.946E401
[+28

~44256E401
C.

~54321E-03

=24549E+01
Ce

~14473D-02
0.
-5.6220-03
0‘
=2.0600-02
~1.2810-C2
S.418D+07
c.
1.0190+04
~1.,7920+03
C.
c.

0.
Qs
0.
O.
Ce

O.
0.
0.

0.
Qe

00
Oe
Oe
0.
O.
0.
0.
0.
Oe
0.
Qe
a.
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SDAT
NOPT
KOPT

AIN

CONI

GS

6L

HP

v1
NSTEPS
MASS
DMASS
THR
PERJD
REFJD
PER
SLAT
SLON
ERR
MAXTT
UMARS
MODE
BOUND

$END

TABLE IV
SAMPLE OUTPUT FOR TARGETING WITHIN BOUNDS
[}dode = é]

1» 1y 1, 1, 1y 14 1y 1y 0Oy 1y 1y C,
1, 1, 1, 1, 1, 1,

0420455E+CS, Co77€€252723€56+0C, 0l Cy Ce12C38E+03, 0,30327E+03,
0'9'

~044539096E+C4y 0415704E+01, C.3521E+C2, 0.,129069233511E+93,
0.302071822048E+03,

~0.55E+C2y Co4E+C2, Co5E+0ly 0.256-C1ly Co.24E+C4s -0.6E+402,
Os1E+Cly O041E+01, O.1E+01s C.1E401l, OQl.1E4C1l, O0O.1E+Cl,
0.6E4CCy Co6E+CC, Co6E+COy Co6E-C3y Ol 1E+G1, C.6E+00,
0.15E402, OCs15E+C2, Co.l15E+02, C.15E-02, C(.5E+02, O.15€+C2,
8y

0s32C6SSE+C4
=0.4772E4C0,

0.12345E4C1,

1y

0404

Ty

Iy

1,

0¢1E-C7,

50,

Oe42€2B4E+CS,

2y

0e21E+C2, Ca35E+02,
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TABLE IV — Continued

#xxxx INCLINATICN BETWEEN BCUNCS (MCCE=2)44%4%

INITIAL CCANIC
SMA -4939,096C

THE CCNTRCL VARIABLES ARE

THE TARCET VARIABLES ARE

ITERATICHM 1

CONTROL FARAMETERS
ALPH2
~554CCOACCCO00

LAGRANGF MULTIFLIERS
l.CCcoccccaooo

lsS7C4CCC
ALPHA

SMA

BETA
4C.CCCCCO0000

1.,CCCCGCCCO00

CRBIT CETAINEC FRCM PRESENT CCATROLS

0 1€466673

ECC

«T€466€6731799

ECC

1419€264056€13E

BETA

SMA  19349,912
TARGET PARAMETERS
SMA
19345,912(C75
DELTA V 1le2355143
ERRORS IN TARGET VARTABLES
SMA
11C5,0876%2¢53
CORRECTICNS TO CCNTROL VARTABLES
ALPHA
-11.8746E€C526

-15.00€00CCCI0

INC
EETA

ECC

INC

~-02

35.21CCCO
DELTA
PERIT
DELTYA
5.CC00CcC0OCCCC
Ce
34,80€452
INC
34,8064515029
INC
Q.
CELTA

11.401080€779

EIGENVALLES OF SECCND PARTIALS OF AUGMENTED FUNCTICN

2421286477280+11

8,41282603C1B+04

506245901648C+04

PER
THCC

NCDE

PER

VIKING TARGETING ANALYSIS PROGRAM (VITAP)

126,06923 NCD  303.07182
T TBURN TASTART
THOOT TBURN
245C00C0000000E~02 2400.00CC0OCCO
1.00000000000 1. Cccocccocco
128.75868 NOD 303.52583
PERT NODE
128.758679590 303.,525826€¢5
PERI NCCE
1.62132041005 -¢2558266€4554
T+DOT TBURN
~342593863654C8E~04 =~15.2568751492
2.0203746052D0+04 le 76£0410488D403

TAN -604002000

TASTART
-60,00000C000C

De
TAN

50.136035

TAN
50. 1360345024

TAN
0.

TASTART
-2.43889172648

20 17771354990+00
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TABLE IV - Continued

ITERATICA 2
CONTROL PARAMETERS
ALPHA BETA DELTA THDOT TBURN
~6648746EECS26 28.C0CCCCCCO00 16.,401C8CET79 24467406136346E-02 2384474212485

LAGRANGE MULTIFLIERS
3.11933£25¢515 -10%592.155C564 Ce 42,1739821634 -5.18282948849

GRBIT CEBTAINEC FRCM PRESENT CCNTRCLS

SMA  2C204.41¢ ECC 77402282 INC  36,239337 PER 131.02962 NOD 202.30496
TARGET PARBMETERS
SMA ECC INC PERI NODE
20204.41£2659 «7174022817646 3€.23933717¢86 131.029617172 3024304960945

DELTA V le225€5€1

ERRORS TN TARGET VARIABLES

SMA ECC INC PERI NODE
25C.£8373241C8 2.6C€554715133E-C3  C, -e649617171922 «9€50390547E0
CORRECTICNS TO CCANTRCL VARIABLES
ALPHA BETA CELTA THDOT TBURAN
15.000200C€000 T7.4CE252465771 -13,23506C15€1 ~7.521978869204E-04 -10.2106029132

EIGENVALLES OF SECOND PARTIALS OF AUGMENTED FUNCTICA
T.52656629€50+11 2.09:11345620+05 241743458528D+C5 9.3584733411D+04 T.8486027652C+03
ITERATICMN 12
CONTROL PARAMETERS
ALPHA BETA DELTA THOOT TBURN
-5843595255367 34,%41603C320 84894€8323481 2440T4€2446420E-02 2371.647¢€3119

LAGRANCE MULTIPLIERS
94.2815422607 517787.364574 Ce 182.143038384 -3404.,673€7218

ORBIT OBTAINED FRCM PRESENT CCNTROLS

SMA  20455,00C ECC 77662637 INC 35.281270 PER 130.38000 NOD  303.27000
TARGET PARAMETERS
SMA ECcc INC PERI] NODE
20455,00(C0000 ¢ 7176629372365 35.,2812702454 130380000000 303,2700C0GCO

DELTA V 1.2172220

ERRORS IN TARGET VARIABLES
SMA ECC INC PERI NODE
~4,65661287207T7E-10 -3,552713678801E-15 Q. -9.094947017729€E~13 (.

CORRECTICNS TO CCNTRCL VARIABLES
ALPHA BETA DELTA THDOT TBURN

—7.381398£320253E-CS ~6.TEE0L15EETCBE-CT 6,092481265466E-09 T.885268236581E-14 9.678599365682E~

EIGENVALLES OF SECCAD PARTIALS OF AUGMENTED FUMNCTICN
2450717982€20+13 G T5GE£655460+06 6.965(759021L+06 245602547370D+06 244947361024D+05

#xxk% [NCLINATICN NOT WITHIN BCUNDS - BEGIN TARGETING TC NEAREST BCUND***kx

TASTART
-€2.42886517265

O

TAN 43,941272

TAN

43.9412715869

TAN

O

TASTART
«66916276C881

2+61596658610+00

TASTART
-€l.7465946681

O.

TAN 444620900

TAN
44,6208995264
TAN
0.
TASTART

12 -1.€379959338€1E~10

2423577477660+C1
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$DAT
NOPT
KOPY

AIN

CCNIT

GS

GL

HP

vl
NSTEPS
MASS
DMASS
THR
PERJD
REFJD
PER
SLAT

SLON

MAXIT
UMARS
MODE

BOUND

$END

1, 1, 1, 1,
1 1y 1, 1,

0.2C455E+C5,

1, 1, 1y 1, 1
1' 1'

O T1€€2G6372365E+CC,

TABLE IV — Continued

v 1y 1,

0435E+02,

C,

0.13038E+03,

0430227E+C2y 00y

«0,4639C96E+04, 0.1ST04E+01, 0.3531E+02, 0.129069233511E+03,

043C23C71822C4EE+(C3,

-0.5€6258529544041E+02,
Je24CT4¢2644€428E-01,

0942815424CCB95E+4C2,
0e182143038S1€E59E+(3,

04349476030252C9€+02,
0.23716476311911E4C4,

oSLTTETIECL29E92ZE+(6,
-0e34046736587502E+C4G,

C+88946832409062E+01,

~Ce€1746594968311E+02,

CeCy»
Ce0y

0.6E+00y 0Q«6FE+00, O0.6E+00, Co6E-03, O 1E+01, Co6E+CO,

0s15E4C2, Co15E+C2,
8y

2e32CES5E+C4,
-0e4772E+00,

0 12345E+C1,

i

Oe LE=CT,

50,
0,428284E+05,
1,

O.21E+4C2, (.35E+02,

0. 15E402, Q.15E-02,

C.5E+02y 0.15E+C2,

.
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TABLE IV - Continued

VIKING TARGET ING ANALYSIS PROGRAM (VITAP)

*+#%XNORMAL TARCETING (MODE=1)%%*%2#

INITIAL CCMIC

SMA -4929,0960 ECC 1.87C400CC INC 35,210000 PER 129,06923 NOD 303.07182 TAN -614746555
THE CCNTFCL VARIABLES #ARE ALPFA BETA CELTA THOCT TBURN TASTART
THE TARGET VARTABLES ARE SMA ECC INC PERI] NCDE

ITERATICA 1

CONTROL PARAMETERS

ALPHA BETA DELTA THDOT TBURN TASTART
~5843595295440 34,5476030252 8.85468324C91 2.4074€2446428E-02 2371.647€3119 -61.7465946683
LAGRANGE MULTIPLIERS
9442815424009 517767.3€1296 Ce 182.143038919 -34044673€65€175 Oe
ORBIT OBTAINEC FRCM PRESENT CCATROLS
SMA  20455.00C ECC  +77662937 INC 35,281270 PER 130,38000 NCD 303.2700C TAN  44,620900
|
TARGET PARAMETERS %
SMA ECC INC PER1 NODE TAN i
20455, CCCC000 « 776629372365 35,2812702458 130,380000000 303,270CC0CCO 44,6208995261

DELTA V 1.2172220

ERRORS IN VTARCET VARTIABLES

SMA ECC INC PERI NOCE TAN
3.255€629011154E-09 3.9C7985046681E-14 -,2812702645830 ~2e128484105319E-12 1.8185894C3546E-12 0.
CORRECTICNS TO CCANTROL VARTIABLES
ALPHA BETA DELTA THOOT TBURA TASTART
4053198651813 4,15337C13317 ~3.6868813€516 ~3+2484842222926-05 —-1.088411549484E-(9 B8.109117220136E-03

EIGENVALUES OF SECCNC PARTIALS OF AUGMENTED FUNCTICN
2¢507179825C0+13 9.TESE€65634D406 649650759127C+C6 245602547486D+06 2445473621080+ C5 2.235714E6720+C1
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ITERATICA 2

CCNTROL PARAMETERS

TABLE IV — Continued

ALPHA BETA DELTA THDOT TBURN TASTARY
-53,827542€259 3G6,1C0617215¢4 5.2C78C18E5175 2.404213962206E-02 2271.647€3119 -€l.7384858511
LAGRANGE MLLTIFLIERS
93.8639C55660 5568272.117C21 24012.,208€1778 138.015147139 ~129.5684%6414 Qe
ORBIT CBTAINEC FFCM PRESENT CCNTRCLS
SMA  20482.251 ECC 77689615 INC 35.035507 PER 130,54974 NOD  303.16178 TAN 44.570231
TARGET PARAMETEFS
SMA ECC INC PERIL NODE TAN
20482,2571€73 «77689615C604 35,035507C2C7 130.549736793 303.,161779428 44,570230730¢
DELTA V¥ 1.217222C
ERRDORS IN TARGET VARIABLES
SMA ECC INC PERIL NODE TAN
~271.2571E72851 ~2. 6617823E6T16E-04 -3,550702073T7S0E-C2 -.169736792887 «1C8220572205 Oe
CORRECTICNS TC CCNTRCL VARIABLES
ALPHA BETA DELTA THDOT TBURN TASTART
-+43587827C€093 6.474164713686E~02 «362383497149 7.086660695754€E-05 0652450922945 4.973723280717€-03
EIGENVALLES OF SECCND PARTIALS OF AUGMENTED FUNCTICN
2.51513785350+13 Se68(T720464€D+06 Te215CT54743D+C6 20 337525C3090+06 3.64442207120+05 2+22197394160+C1
ITERATION 6
CONTROL PARAMETERS
ALPHA BETA DELTA THOOT TBURN TASTART
~54,2615624406 35.1678744022 54569€5351CC1 244112350817C3E-02 223724,370E4545 -61e7341841275
LAGRANGE MLLTIFLIERS
93.8681130452 552(€7.961589 24275, 5CSCE€CS 20,4146420811 ~24.70C81772¢2 0.
ORBIT OBTAINED FRCM PRESENT CCNTROLS
SMA  20455.00C ECC .776€2937 INC 35,C00000 PER  130.38000 NCD 303,2700C TAN  44.674292
TARGET PARAMETERS
SMA ECC INC PERI NODE TAN
20455.0CCC000 176629372365 35,£00€000000 130380000000 3C3,2700C00CO 4406742915574
DELTA Vv 1.217€E72
ERRORS IN TARGET VARTABLES
SMA ECC INC PERI NODE TAN
1.979C60471058E-09 1,776356839400E~14 9.094947CL1729E-13 -9,0684947017729€E~13 0. O
CORRECTICNS TO CCNTRCL VARIABLES
ALPHA BETA DELTA THDOT TBURN TASTART

-4,876%283C2904E-12 -1,005350177936E-11

204659181641€64E-11 -3,874074630458E-15 -4,588838924858E~11 -1.735523923412€E-11

EIGENVALUES OF SECCND PARTIALS OF AUGMENTED FUNCTICN

2.5€528687270+413 946624449378D+06

«28327668140+C6 243467554479D+06 3.28895083710+C5 2021105692CSD+C1
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MEWTCN RAPHSCM MATRIX

1.083E4(7
=3.137E+06
1621 4E4C7
16291E+10
6e 56 TE+(2
~T+090E+C6
=64 TS3E+C2
-1e437E-C2
2.935E400
~24378BE+C1
~14J96E+C1
0-

INVERSE
246810-C9
l.28€D-CS
2+9240D-C9
1.3040-12

-2.1650-17

-B84439L-09
64 6690-C5

~64139D0+CO

~2.2930-C1
204390-C3

-1.421D0-01
00

~3.12TE+CE
44388E+406
=44 1C9E+C4
-44223E+07
=~T<4ETE+02
-B8.2C1E+04
1.£26E+02
1.752E-02
-6.E80E+00
~6.EE9E+Q0
1o C€6E+01
NDe

1+2€60~-09
6.1720-10
le 4C3D-09
6.258C-13
-1.0290-17
~4,049C-09
542£620-05
-4, LETD+OC
-2.648D-01
3.6C0D-03
~6.5890-02
0.

TIME FOR THIS CASE

le 014E+C7
-44TCSE+C4
1.303E+C7
1.661E+10
3.448E+02
—9.257E406
1.933E4C2
~64076E-C3
-5.701E-01
~4e16TE+0]
1.720E+00
O

24924D-09
1.4030-G9
3.188C-C9
1.4220-12
-2.361D-17
~9,202C-C9
444080-04
-4412004C1
1.859C-01
-9,605C-C3
1.10¢D~-01
0.

29.522

1.291E+10
-4,223E+C7
1.661E+10
24509E+13
2.416E+C5
~1a194E+10
1.721E+C5
1.927E+C1
-1.C58E+03
~5e240E+4C4
1,581E+C3
Ce

1.304D~-12
€.2568D0-13
1.422D-12
64345D-16
-1.0530-20
~4.1050-12
=3.7970-C7
3.515D0~€2
~6.651D0-Cé6
-5,285D-06
~T«5720-C6
00

TABLE IV - Concluded

64 56TE+02
=7.46TE+02
2.448E+C2
20 416E+C5
Ze3CEE+C]
24 266E+03
=4 T42E4C1
~54CE1E-04
-5.52G6E-C4
-1s4731E-02
B8e341F-C5
Ce

-2¢165D-17
-1.03580-17
-2.3€1D0-17
-1.0£30-2C
1, 7450-25
€4 €1€D-17
-1.5780-02
-1.1€4D+02
-5.1370+00
-4.3030-03
5.20¢D-C3
Ce

~7.C90E+06
~843C1E+04
-G425TE+CH
~1.194E+10
2.266E+C3
14469E+07
le286E+C2
-1.022€-03
=4446B8E-01
-3,115E+4C1
~1.016E+00
Ce

-844390-09
-4,049C-09
~9,2020-09
-44105D-12
64815C-17
2.656D-C8
-2.8470-C6
8.171C-01
~1e.C510-03
-1.302C-02
-1.€650-C2
Ce

~6e753E+02
1.636E+03
14933E+02
1.731E+05
~44T42E+01
1+286E+02
0.
0.
Ce
O
Oe
Oe

6.669D-05
5«3620-05
4,408D-04
-3,7970-07
~1.9780-02
-2.8417D-06
-5.778D0-01
503610404
3.,8430+00
~T7.5830+00
-5.3520+00
0.

~1.437E-C2
L. 752E-02
-64CT6E-C3
1.927E+401
-5.C61E-04
~1.022E-03
0.

0.

O

Ce

0.

C.

-6.139D0+00
-4, 8870+0C
=4,120D+01
34575D-C2
~1.164D+02
8,171D0-C1
5+361D+04
-5.061D+09
=3,2340+05
7.031D+C5
5.0520+C5
0.

24935E+0C
~6.680E+0C
-5« TC1E-C1
=1.058F+C2
~50529F-C4
~4.468E-C1
0.

0.

O

0-

0.

O.

~2.293C-01
~24€480-C1
1.85$0-C1
-6.651C-C6
~541370+0C
~1.051C-C2
3.849D+0C
=342340+4C5
~B84542C+04
Se3S8D+C2
-1.105C+04
0.

-24378E401
—6.889E+00
=44 167E401
=54 240E 404
-14731€-02
=3.115€E+01

0.

c.

Ol

C.

C.

C.

244390-03
3.6000-03
=646C50-03
~5.2850-06
~44303D0-03
-1.302D0-02
-7.5890+00
7.C310+05
9.3980D+02
-1.8410403
=1.5210+03
G.

~1.09¢€E+01
1.066E+01
1.72CE+Q0
1.581E+03
B.341E-05
=1.016E+(0
0.
D.
0.
0.
Qe
0.

-1.4218-01
~6.9890-02
l.1C6D-01
~7.972C-06
5.2C60-03
-1.0650-02
-5.3520+00
5.C520+05
-1.1050+04
-1.521D0+03
-2.058D+C4
0.

0.

0.
0.

0.
0'

0.
0.
Oe
0.

0.
0.
0.

[«1%
0.

0.
0.
0.

0.
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$DAT
NOPT
KOPT
AN

CONT

S

6L

HP

vl
NSTEPS
MASS
DMASS
THR
PERJID
REF D
PER
SLAT
SLON
ERR
MAXIT
UMARS
MODE
BOUND

$END

"

"

TABLE V
SAMPLE OUTPUT FOR BACKWARD TARGETING MODE
[Mode = 3]

ty 1o 1y 1y l1¢ le¢ 1y Q¢ Oy 1y 14 Oy
59 4y 3y 4y 44 2,
0a2%44TE+Cly 0e0y 040y -0s454E+01y O.13CCEE4C3, Cu.0,

0¢2(455E+CE, CoTi€E26272365E+4CCy 0,35E+402, C413038E+03,
0.,3C227E+4013,

-0,55F4(2, 0Qa4E+02, 0.5€+01, O0,256-01, C.24E+04, O0.45E+02,
Ja1€4C1y Q.1E+01l, O.1E+01l, C.l1E+01, Q.lE+4Cl, C,1E401,
0.6F+4CCs 0s6E+0C, O0.6E+00y Co6E-~03, O0.1E+01y O0.6E+00.

0. 156402y O0a15E402y Q0o15E+02y 0.15E-02y CLEE+02, O0.15E+02,
8y
0.3206S5E4C4,

-0.4772E+CCy

0. 12245E+C1,

I,

Ly

04 1E-Q7y

50,
0.428284E+40%,
3

0.0y Q.18E+03,
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TABLE V - Continued

VIKING TARGETING ANALYSIS PROGRAM (VITAP)
*x65*BACKWARD TARGETING (MODE=3)%*%#x

INITIAL CCOMIC

SMA  2045%,00¢ ECC .77€62937 INC 35.,CCCCOO PER 130.38000 NCD 303.27000
THE CCNTECL VARIABLES ARE ALPHA EETA DELTA THDCT TEBURN TASTART
THE TARGET VARIABLES ARE VINF DECSV RTASV

ITERATICA 1

CONTRCL FARAMETERS

ALPHA BETA DELTA THOOT TBURN
~55.0€000CC000 40,CCCQC00000 5e.CCCCCCOCOCC 245C0C00000000E~02 2400.00C0C0000
LAGRANGE MULTIPLIERS
1.€0C000CC000 O 0. 1.€00C0000000 1.0000C000CCO
ORBIT OBTAINED FRCM PRESENT CCATROLS
SMA -4854,6847 ECC 1.9307407 INC 3f.,441364 PER  129.36505 NOD 302.82894
TARGET PARAMETERS
VINF B8*R BT DECSYV RTASV
2457€198(7011 ~48C4,0C183178 6837.732570£2 354,674089349 1306355024450

DELTA v 142352143

ERRORS IN TARGET VARIAPBLES

VINF B#R B*T DECSV RTASV
~2.54980701C€624E-02 0. 0. «385910651461 -+ 275024490129
CORRECTICNS TJ CCNTRQOL VARIABLES
ALPHA BETA DELTA THDOT TBURN
«4£2710CC2179 «457260657010 -2.033737174550 1+500000000000E-03 -4,40256290213
FINAL MASS 2061.€7000C

EIGENVALLES OF SECCND PARTIALS OF AUGMENTED FUNCTICA
8033241465410+401 24 40836734570+00 1.9966941816D+00 ~3.72363234000+00 -6413476980160+00

TAN

TAN

45,000000

TASTART
45,0000000000

Q.

297.86829

TAN

297.868291354

TAN

0.

TASTART
~e155157459117

=642791776625D+06
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TABLE V — Continued

ITERATICNA 2

CONTRCL PARAMETERS

ALPHA BETA DELTA T+DOT
-54,5172855978 4Ce45726C€570 6. €€GT210E272 243500CCC00000E=~02
LAGRANGE MLLTIFLIERS
24305861¢7823 Ce Ce 2979964684660
ORBIT OBRTAINED FRCM PRESENT CCMTRCLS
SMA =48¢€¢1.5682 ECC 1.G858033 INC 38,4563175 PER 129.41727 NCD
TARGET PARAMETEFS R
VINF B*R B*T7 DECSV
2. 6809456648 -4756.50561222 6823,25774489 354.6897095C2

DELYA V 1e232€€58

ERRORS IN TARGET VARIABLES

VINF B%R B*T DECSV
~24339456641724E-C2 O. Qe «3702904981 36
CORRECTICNS T0O CCATRCL VARIABLES
ALPHA BETA DELTA THCOY
«572259724437 «5457186574855 ~2+05866091386 1.5000C0000000E~02
FINAL MASS 2C€2.771C94

EIGENVALLES OF SECCAD PARTIALS OF AUGMENTED FUNCTICN

TAURN
2395.597C3710

990405855121

302.83375

RTASY

1204333221173

RTASY

-+253331172653

TBURA
-3,16638521221

5.,05€027LE€7D+01 2.000C0532760+00 «£223947392C+C0 -heT74416468630+00 -T7.79154682C80+400

ITERATICN 46

CONTRCL PARAMETERS

ALPHA BETA DELTA THOOT
~5845753€€4589 34,5€84174529 16.2911€0€24¢ 1.601962734839E-02
LAGRANGE MLLTIFLIERS
~74€0113.22293 O Ce 9783, 80393437
ORBIT ORTAINED FRCM PRESENT CCATROLS
SMA ~4939,1218 ECC 1.65%6038 INC 35,05C806 PER 129.3C790 NCO
TARGET PARAMETERS
VINF B*R B*7 DECSV
2454466665556 -4743,85826518 683G,48432114 355,060000003

DELTA V 1,214€5€1

ERRORS IN TARGET VARIABLES

VINF B*R B*T DECSY
44429C97C8SCATE-1C O. Oe -3+044988261536E-09

CORRECTICNS TO CCNTRCL VARIABLES

ALPHA BETA DELTA THDOT
1.4773480%€TT5E-C9 14152097084863E-C9 3,40 €362694156E-C9 1,1681566859T4E~12

FINAL MASS 2C7€4$56201

EIGENVALUES QF SECCND PARTIALS OF AUGMENTED FUNCTICN
1.96€43231¢€20+13 1.040907174880+07 5.819171725582D0+(6 1.52532658810+06

TBURN
2367.966€8¢8¢€1

8895.53568726

303.0027¢

RTASY

130.079959956

RTASV

TAN

TAN

TASTART
4541551574591

Oe

297.86383

TAN

2974863830483

TAN

O.

TASTART

~e1166887889C8

1,€1267757C6D+C7

TASTART
44,5623489078

[«

297.70925

TAN

2974709246057

TAN

44349203663E718E~09 0.

TBURN

6e957999209635E-07 ~9.931706836794E-09

2436430115280+05

TASTART

3.7881902292D+00
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9e642E+06 -3.036E+06
—3403¢E+(6 5.ZC4E+0E
9.004E+C6 -3.510E+04
GeTS3E+CY ~3,490E+07
~54326E+C1 ~14229E+C1
5¢462E+06 1.589E+04
1.340€E-C2 -1.111E-C2
e J.
Oe Qe
=5.643E+00 -5.25CE+C0O
1. 745E+01 =~3.4S6E+00
Oa Qe

INVERSE
1l.268D-C6 1.023D-C6
1.0230-C6 8.2€¢20-C7
-1.044D-C6 -8,441D-C7
=1e521C~12 3.€E50-14
~449210-15 =-3,526C-15
2407CD-C9 1.%£50-09
4e134D-C2 3.5460-03
O, - Je
Oe Oe
2.1520-01 3.£15C~-02
1, 4C0D-C1 2.,4€20-02
Oe D

TIME FCR THIS CASE

9.004E+C6
=3.51CE+04
1.G91E+C7
1.183E+10
-TeT68E+C1
6.648E+06
5.376E-C3
0.
O.
-14201E+C1
1.772E+01
Oe

~1.0440-06
~84441C-C7

1.01€D0-06
-1.420C-10
=2.951C-16

3.193C-C8
-3.1250-C1

0.

C.
-1.885€-01
~8.6810-G2

0.

T7.75¢

S.T53E+(C9
-3.490E+C7
le183E+1C
1.998E+13
-64205E4C5
6.970E+CS
5«5T1E+COC
Ce
0.
~1.218E+C4
1.8C6E+C4
0.

-1.521D-12
34685D-14
-1.420D-10
1.389D-13
5.417D0-18
-449580-12
1.303D-C4
Ce
Oe
1.€530-06
-1e£290~C6
Ce

TABLE V — Concluded

-5.326E+01
~le239E+01
~T7.768E+C]
-64205E+C5
3.518E+00
4.6(85+C2
64352E-C4
Ce
Ce
-1.48CE-0C3
leGE1E-C3
Ce

~4,9210-15
-2.62¢D-15
-2.951C-16
5.,4170-18
3 687D-22
3.0C€0-15
1.575D+C3
Ce
Ce
-2.0660+00C
-1.878&0+00
0.

Ce462F+06
1.689E+C4
€ E4BE+CE
€4ST0E+09
44,6CBE+02
€. T60E+06
~24C79E-03
C.

Ce
4.€17E+00
-€. E22E+CO
O.

2.C70C-09
1.5550-09
2,1930-08
-4,558C-12
2.006D-15
7.430C-08
S.020C~-02
Ce
Q.
2.086D-02
-3.116C-C2
Ce.

1.3490€-02
-ls111€-02

5,376E-03

5.5T1E+00

6.352E-04
-2.079E-03

Do

Q.

0.

O

O.

0.

44134D-02
3.5460-03
-3.125D-01
1.303D-04
1.575D0+03
9.020D-02
-5.,8820+06
C.
Oe
-248720+04
441070404
0.

0.

Oe
O.
Oe
C.
Oe
0.
Ce
0.
0.
Q.

0.
Q.
Ce
O.
0.
O.
Ce
C.
C.
0.
0.
Qe

O.
Ge
Oe
Oe
0.
0.
0.
O.
¢
0.
0.
Qe

Ce
0.
C.
Oe
0.
0.

Ce
Q.
0.
Ce
O.

~5.643E+00
-5.290£+00
=1.201E+01
-1,218E+04
-1.480£-03
4061 TE400

Ce

Ce

Ce

Ce

Ce

Ce

Z2.052D-C1
3.,5150-02
-1.8850-01
1,€53D-C6
-2.0660400
2.0860-02
=2.872D404
Ce
Co
~54757D404
=2.6C6D+04
C.

1.745E+01
=3.456E+4C0O

1,772€401

Le8C6E+C4

1.G€1E~-03
~6.822€+00

0.

0.

O.

0.

0.

0.

1.400D0-01

2.4600-02
-8,681C-02
~le5290-C6
~1.878C+00
~3.116D-02

4.1070+C4

0.

Q.
-3.606C+04
-2.5400+C4

0.

0.
Ce
o2
Oe
0.
0.
O.

O.
0.
0.
0.

C.
[+1
0.
0.
0.
0.

Oe
[«
Oe
Oe
Q.
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TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge. ’

TECHNICAL NOTES: Information less broad
in sCope bue nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English,

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies,

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and

Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Woashington, D.C, 20546



